0

Full Content is available to subscribers

Subscribe/Learn More  >

A Data-Driven Exploratory Approach for Level Curve Estimation With Autonomous Underwater Agents

[+] Author Affiliations
Hsien-Chung Lin, Masayoshi Tomizuka

University of California, Berkeley, California

Eugen Solowjow, Edwin Kreuzer

Hamburg University of Technology, Hamburg, Germany

Paper No. DSCC2017-5118, pp. V002T14A005; 6 pages
doi:10.1115/DSCC2017-5118
From:
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME

abstract

This contribution presents a method to estimate environmental boundaries with mobile agents. The agents sample a concentration field of interest at their respective positions and infer a level curve of the unknown field. The presented method is based on support vector machines (SVMs), whereby the concentration level of interest serves as the decision boundary. The field itself does not have to be estimated in order to obtain the level curve which makes the method computationally very appealing. A myopic strategy is developed to pick locations that yield most informative concentration measurements. Cooperative operations of multiple agents are demonstrated by dividing the domain in Voronoi tessellations. Numerical studies demonstrate the feasibility of the method on a real data set of the California coastal area. The exploration strategy is benchmarked against random walk which it clearly outperforms.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In