Full Content is available to subscribers

Subscribe/Learn More  >

A Sequential LMI Approach for Design of a Gain-Scheduled PID Controller for LPV Systems

[+] Author Affiliations
Yan Wang, Rajesh Rajamani

University of Minnesota, Minneapolis, MN

Paper No. DSCC2017-5199, pp. V002T05A002; 10 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME


This paper aims at developing a robust gain-scheduled proportional-integral-derivative (PID) control design method for a linear-parameter-varying (LPV) system. It is recognized in the literature that robust fixed-order controller design can be formulated as a feasibility problem of a bilinear matrix inequality (BMI) constraint. Unfortunately, the search for a feasible solution of a BMI constraint is a NP hard problem in general. A common way to solve this dilemma is to apply a linearization method, such as variable change method or congruence transformation, to transform the BMI into LMI. The applicability of the linearization method depends on the specific structure of the problem at hand and cannot be generalized. This paper formulates the gain-scheduled PID controller design as a feasibility problem of a quadratic matrix inequality (QMI) constraint, which covers the BMI constraint as a special case. An augmentation of the newly developed sequential LMI optimization method is proposed to search for a feasible solution of a QMI constraint iteratively. In the application part, a vehicle lateral control problem is presented to demonstrate the applicability of the proposed algorithm to a real-world output feedback control design.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In