Full Content is available to subscribers

Subscribe/Learn More  >

Extended Kalman Filter-Aided Active Beam Tracking for LED Communication in 3D Space

[+] Author Affiliations
Pratap Bhanu Solanki, Xiaobo Tan

Michigan State University, East Lansing, MI

Paper No. DSCC2017-5344, pp. V002T04A009; 10 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME


Maintaining Line-Of-Sight (LOS) between the receiver and the transmitter is an inherent challenge associated with light-emitting diode (LED)-based free space optical communication systems, especially when such systems are used by mobile robots. Due to constant movement of underlying robotic platforms and other unwanted disturbances, there is a need for an active alignment system that allows the receiver to constantly track the direction of the transmitting device. In this paper, we propose an active alignment control system, equipped with two degree-of-freedom (DOF) actuation and capable of tracking a transmitting source moving in the three-dimensional (3D) space. A 3D extension of a previously proposed Extended Kalman Filter-based algorithm is used to estimate the components of the angle between the receiver orientation and the receiver-transmitter line, which are used subsequently to adjust the receiver orientation. The algorithm uses only the measured light intensity from a single photo-diode, where successive measurements are obtained via a circular scanning technique. Simulation results are presented to illustrate the proposed approach and explore the tradeoffs in the design of the scanning pattern. In particular, a scheme with adaptively adjusted scanning amplitude is shown to deliver satisfactory alignment performance with actuation effort.

Copyright © 2017 by ASME
Topics: Filters



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In