Full Content is available to subscribers

Subscribe/Learn More  >

Torque Characterization of a Novel Pneumatic Soft-and-Rigid Hybrid Actuator

[+] Author Affiliations
Mahdi Haghshenas-Jaryani, Maulik Manvar, Muthu B. J. Wijesundara

University of Texas at Arlington Research Institute, Fort Worth, TX

Paper No. DSCC2017-5201, pp. V001T30A007; 7 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 1: Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5827-1
  • Copyright © 2017 by ASME


This paper presents development of a theoretical model for predicting the torque generated by a pneumatic soft-and-rigid hybrid actuator at a given actuation pressure and bending angle. The soft actuator with a novel architecture is comprised of half bellow-shaped flexible hollow structure (soft section) in-between block-shaped semi-rigid sections made of silicone rubber materials. This actuator provides forward and backward bending motion when air pressure and vacuum are applied into the soft section, respectively. A simplified steady-state model was developed based on the quasi-static assumption when the system dynamics is slow enough that all of the interacting forces comes to an equilibrium at any given bending angle during the motion. The elastomeric material was modeled using the Yeoh 3rd order model to capture its nonlinear behavior. The model was studied for the soft actuators with different geometrical features in two cases of the free end motion (without external force) and the constrained end motion (with external force). Experimental testing and finite element simulations were carried out corresponding to the case-studies to validate the model. Comparison of the results obtained by these two approaches show a good agreement with the theoretical model’s prediction.

Copyright © 2017 by ASME
Topics: Torque , Actuators



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In