Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Evaporation From a Sessile Constant Shape Droplet

[+] Author Affiliations
Yiğit Akkuş

ASELSAN A.Ş., Ankara, Turkey

Barbaros Çetin

Bilkent University, Ankara, Turkey

Zafer Dursunkaya

Middle East Technical University, Ankara, Turkey

Paper No. ICNMM2017-5537, pp. V001T04A004; 6 pages
  • ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels
  • Cambridge, Massachusetts, USA, August 27–30, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5830-1
  • Copyright © 2017 by ASME


In this study, a computational model for the evaporation from a sessile liquid droplet fed from the center to keep the diameter of the droplet constant is presented. The continuity, momentum and energy equations are solved with temperature dependent thermo-physical properties using COMSOL Multi-physics. At the surface of the droplet, convective heat and evaporative mass fluxes are assigned. Since the flow field is affected by evaporative flux, an iterative scheme is built and the computation is automated using COMSOL-MATLAB interface. Correlations are implemented to predict the convective heat transfer coefficients and evaporative flux. Three different wall temperatures are used in simulations. The results show that the flow inside the droplet is dominated by buoyancy when the effect of the thermo-capillarity is neglected. The resulting flow generates a circulation pattern emerging from the entrance to the apex, along the surface of the droplet to the bottom heated wall and back to the entrance.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In