0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Pool Boiling With HFE7000 Over Selectively Sintered Microchannels

[+] Author Affiliations
Travis S. Emery, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. ICNMM2017-5530, pp. V001T04A001; 9 pages
doi:10.1115/ICNMM2017-5530
From:
  • ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels
  • Cambridge, Massachusetts, USA, August 27–30, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5830-1
  • Copyright © 2017 by ASME

abstract

As the need for efficient thermal management grows, pool boiling’s ability to dissipate high heat fluxes has gained significant interest. The objective of this work was to study the performance of pool boiling at atmospheric pressure using a dielectric fluid, HFE7000. Both plain and enhanced copper surfaces were tested, and these results were then compared to similar testing performed with water and FC-87. The enhanced surfaces utilized microchannels with porous coatings selectively located on different regions of the heat transfer surface. A maximum critical heat flux (CHF) of 41.7 W/cm2 was achieved here, which translated to a 29% CHF increase in comparison to a plain chip. A maximum heat transfer coefficient (HTC) of 104.0 kW/m2°C was also achieved, which translated to a 6-fold increase in HTC when compared to a plain copper chip. More notably, this HTC was achieved at a wall temperature of 38.4 °C. This HTC enhancement was greater than that of water and FC-87 when using the same enhanced surface. The effect of sintering location was found to have a similar effect on CHF with HFE7000 in comparison with water. The effect of microchannel size was shown to have similar effects on CHF when compared with FC-87 and water. From the results found here, it is concluded that the employment of selectively sintered open microchannels with HFE7000 has significant potential for enhanced heat dissipation in electronics cooling applications.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In