Full Content is available to subscribers

Subscribe/Learn More  >

Acoustoelastic-Based Stress Measurement Utilizing Low-Frequency Flexural Waves

[+] Author Affiliations
Mohammad I. Albakri, Vijaya V. N. Sriram Malladi, Pablo A. Tarazaga

Virginia Tech, Blacksburg, VA

Paper No. SMASIS2017-3858, pp. V002T05A004; 6 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME


Current acoustoelastic-based stress measurement techniques operate at the high-frequency, weakly-dispersive portions of the dispersion curves. The weak dispersive effects at such high frequencies allow the utilization of time-of-flight measurements to quantify the effects of stress on wave speed. However, this comes at the cost of lower sensitivity to the state-of-stress of the structure, and hence calibration at a known stress state is required to compensate for material and geometric uncertainties in the structure under test.

In this work, the strongly-dispersive, highly stress-sensitive, low-frequency flexural waves are utilized for stress measurement in structural components. A new model-based technique is developed for this purpose, where the acoustoelastic theory is integrated into a numerical optimization algorithm to analyze dispersive waves propagating along the structure under test. The developed technique is found to be robust against material and geometric uncertainties. In the absence of calibration experiments, the robustness of this technique is inversely proportional to the excitation frequency. The capabilities of the developed technique are experimentally demonstrated on a long rectangular beam, where reference-free, un-calibrated stress measurements are successfully conducted.

Copyright © 2017 by ASME
Topics: Stress , Waves



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In