0

Full Content is available to subscribers

Subscribe/Learn More  >

Novel Steerable Smart Needle With a Built-In Recovery Mechanism for Multiple Actuations

[+] Author Affiliations
Mohammad Sahlabadi, Kyle Jezler, Parsaoran Hutapea

Temple University, Philadelphia, PA

Paper No. SMASIS2017-3802, pp. V002T04A012; 4 pages
doi:10.1115/SMASIS2017-3802
From:
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME

abstract

Smart Memory Alloys have brought a range of new capabilities to existing and novel designs due to their unique properties and ability to induce stress and strain in the material due to thermomechanical loading. Shape memory alloy-based smart material has widely been used and studied for biomedical applications. This includes smart needle for percutaneous procedures, self-expanding Nitinol grafts, stents, and other permanent internal devices. The smart needle is a needle in which deflection/path of the insertion in tissues can be controlled by incorporating Nitinol wire actuators on the body of the needle. However, smart needle designs proposed in the past lack both flexibility for multidirectional angles, and they do not allow for multiple martensitic phase transformations and are thus not repeatable. Each time the Nitinol wire is actuated, the wire would have to be manually reset to its initial length. Active materials like Nitinol require a bias force or mechanism that reverts the activated form of the needle back to its original martensitic form, which in the case of active needles is a straight wire. The lack of a recovery mechanism means that subsequent austenite transformations for deflection in opposing or similar trajectories cannot be performed as the system will not fully reset itself once cooled. In our proposed design, four Nitinol wires are embedded into a needle and act independently of one another to provide multi directional needle deformations. By providing tension onto a flexible 3D printed needle shaft, they can pivot a hard needle tip into any given direction. Once the needle’s deformation is complete, the material’s natural rigidity coupled with other Nitinol wires pulling resistance will restore the initial length of the actuated wire as it cools. This allows the needle to undergo a martensitic transformation and then subsequent cooling followed by additional phase transformation in a different direction. This makes the needle’s mechanism repeatable and functional for multiple insertions.

Copyright © 2017 by ASME
Topics: needles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In