0

Full Content is available to subscribers

Subscribe/Learn More  >

Free and Forced Vibration Characteristics of Axially Graded Multifunctional Viscoelastic Beams

[+] Author Affiliations
Mariona Heras Segura, Kumar Vikram Singh, Fazeel Khan

Miami University, Oxford, OH

Paper No. SMASIS2017-3966, pp. V002T03A036; 8 pages
doi:10.1115/SMASIS2017-3966
From:
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME

abstract

Variable performance characteristics in a multifunctional structure may be achieved by identifying suitable material candidates, and spatially varying, or grading, their material properties along the structures. Additive manufacturing (e.g. 3D printing) offers various possibilities to fabricate/manufacture such graded structures. The material properties of multifunctional composite structures, such as beams or plates, are often graded along their thickness (laminate/sandwich) or distributed in a material matrix (fibers/nanoparticles). In recent years, it has been demonstrated that by tailoring the materials in other directions (axially/radially), superior mechanical behavior and structural stability can be realized. In this research, the modeling and analyses of axially graded polymeric beams to maximize their vibration performance for a large bandwidth of frequencies and damping is presented. Polymeric materials have frequency and temperature dependent viscoelastic properties (complex modulus, glass transition temperature etc.) which can be leveraged for different applications. The goal is to spatially combine these materials such that desired longitudinal vibration characteristics (natural frequencies, damping and modes) can be achieved. To this end, the modeling for the free and forced vibration of beams with spatially varying properties, is carried out by a piecewise uniform continuous model. The spectral characteristics (natural frequency, damping ratios, and frequency response functions) of the axially graded beams are computed by solving associated transcendental eigenvalues problems. The parametric studies included the grading of polymers which are regularly used for additive manufacturing, such as ABS, PLA, etc. These results demonstrate that the response of the system can be manipulated by axial grading and optimal design/fabrication (3D printing) of multifunctional smart structures may be developed for vibration control applications.

Copyright © 2017 by ASME
Topics: Vibration

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In