Full Content is available to subscribers

Subscribe/Learn More  >

Flexural Frequency Bandgaps in a Foldable Metamaterial Structure

[+] Author Affiliations
Aditya Nanda, M. Amin Karami

University at Buffalo, Buffalo, NY

Paper No. SMASIS2017-3892, pp. V002T03A029; 14 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME


This manuscript investigates the flexural wave propagation behavior of a foldable metamaterial structure. Origami-inspired foldable structures are making inroads into many engineering applications — deployable solar cell arrays, foldable telescope lenses, foldable automotive airbags, to name a few; driven primarily by some of the remarkable mechanical properties (high stiffness, negative Poisson’s ratio, bistability etc.) of these structures. The chief motivation of this research is a comprehensive analysis of flexural wave propagation in such foldable structures. The repeating unit cell of the structure consists of an Euler-Bernoulli beam and a torsion spring. Transfer Matrix (TM) method is used to analyze the vibration attenuation properties of the structure and it is shown that the structure exhibits bandgap behavior. The obtained bandgaps are validated using Finite Element Analysis (FEA). Using the characteristic equation of the transfer matrix, we derive a transcendental equation for the bandgap edge frequencies. We show that for the nth band gap, the second band edge frequency is always equal to the natural frequency of the nth modeshape of the constituent beam under the simply supported condition. This frequency, therefore, is independent of the torsion spring constant. In addition, a detailed parametric study of the variation in band edge frequencies when the geometric and material parameters of the structure (Young’s modulus of beam, torsional spring constant, width and thickness of beam etc.) are varied is conducted. It is concluded that the ratio of flexural rigidity of the beam to the torsion spring constant (EI/kt) is an important parameter affecting the width of the bandgap. For low values of the ratio, i.e., low beam flexural rigidity and high torsional stiffness, the first band edge frequency is almost equal to the second band edge and, effectively, no bandgap exists. As the stiffness ratio increases, i.e. high flexural rigidity (EI of the beam) and low torsional stiffness kt, the first band edge frequency assumes progressively lower values relative to the second band edge and we obtain a relatively large bandgap over which no flexural waves propagate. This has important ramifications for the design of foldable metamaterial structures.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In