Full Content is available to subscribers

Subscribe/Learn More  >

Design of Disordered Periodic Structures for Mode Localization

[+] Author Affiliations
Gabriele Cazzulani, Emanuele Riva, Edoardo Belloni, Francesco Braghin

Politecnico di Milano, Milano, Italy

Paper No. SMASIS2017-3876, pp. V002T03A026; 8 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME


Periodic structures are the repetition of unit cells in space, that provide a filtering behavior for wave propagation. In particular, it is possible to tailor the geometrical, physical and elastic properties of the unit cells, in order to attenuate certain frequency bands, called band-gaps or stop-bands. Having each element characterized with the same parameters, the filtering behavior of the system can be described through the wave propagation properties of the unit cell. This is technologically impossible to obtain, therefore the Lyapunov factor is used, in order to define the mean attenuation of a quasi-periodic structure. Tailoring Gaussian unit cell properties potentially allows to extend the stop-bands width in the frequency domain. A drawback is that some unexpected resonance peaks may lie in the neighborhood of the extended regions. However, the correspondent mode-shapes are localized in a particular region of the structure, and they partially decrease the global attenuating behavior. In this paper, the aperiodicity introduced in the otherwise perfect repetition is investigated, providing an explanation for the mode-localization problem and for the stop-bands extension. Then, the proposed approach is applied to a passive quasi-periodic beam, characterized from a localized peak within a designed band-gap. The geometrical properties of its aperiodic parts are changed in order to deterministically move the localization peak in the frequency response. Numerical and experimental results are compared.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In