Full Content is available to subscribers

Subscribe/Learn More  >

Two Stage Design of Compliant Mechanisms With Superelastic Compliant Joints

[+] Author Affiliations
Jovana Jovanova

Ss Cyril and Methodius University in Skopje, Skopje, Macedonia

Mary Frecker

Pennsylvania State University, University Park, PA

Paper No. SMASIS2017-3825, pp. V002T03A019; 9 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME


The design of compliant mechanisms made of Nickel Titanium (NiTi) Shape Memory Alloys (SMAs) is considered to exploit the superelastic behavior of the material to achieve tailored high flexibility on demand. This paper focuses on two-stage design optimization of compliant mechanisms, as a systematic method for design of the composition of the functionally graded NiTi material within the compliant mechanism devices. The location, as well as geometric and mechanical properties, of zones of high and low flexibility will be selected to maximize mechanical performance. The proposed two-stage optimization procedure combines the optimization of an analytical model of a single-piece functionally graded unit, with a detailed FEA of a continuous compliant mechanism.

In the first stage, a rigid-link model is developed to initially approximate the behavior of the compliant mechanism. In the second stage the solution of the rigid-link problem serves as the starting point for a continuous analytical model where the mechanism consists of zones with different material properties and geometry, followed by a detailed FEA of a compliant mechanism with integrated zones of superelasticity.

The two-stage optimization is a systematic approach for compliant mechanism design with functional grading of the material to exploit superelastic response in controlled manner. Direct energy deposition, as an additive manufacturing technology, is foreseen to fabricate assemblies with multiple single piece functional graded components. This method could be applied to bio-inspired structures, flapping wings, flexible adaptive structures and origami inspired compliant mechanisms.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In