0

Full Content is available to subscribers

Subscribe/Learn More  >

Morphing High-Temperature Surfaces for Shapeable Hypersonic Waverider Vehicles

[+] Author Affiliations
Austin A. Phoenix, Jesse R. Maxwell, Gabriel B. Goodwin

U.S. Naval Research Laboratory, Washington, DC

Paper No. SMASIS2017-3766, pp. V002T03A012; 9 pages
doi:10.1115/SMASIS2017-3766
From:
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4

abstract

In the development of high-performance hypersonic vehicles, the use of high lift and low drag concepts demonstrates improvements in thermal loading, vehicle accelerations and load factors, and total energy dissipation. The key design limitation of hypersonic waveriders is that the optimal waverider geometry is highly dependent on Mach number and deviations from the design point may significantly degrade performance. This paper addresses this fundamental limitation of waveriders by evaluating the ability to morph the bottom surface of a waverider to provide the optimal point-design performance across a broad operational range. This paper addresses the first step required to delivering this morphing capability by addressing the number of morphing control points required to accurately match the complex surfaces of the waverider for multiple Mach number designs. Additionally, the tradeoff between number of additional control points and surface error is investigated. To achieve this, a sensitivity analysis using a Q-DEIM algorithm is performed to identify and rank the optimal set of control. This control point set is verified through analysis and used to evaluate the performance of a morphing waverider structure. Future efforts will evaluate Mach number dependent pressure distribution, aerodynamic structural loading, and thermal loading. This work simply identifies the scale of the control problem and identifies a methodology to actuate a complex surface to enable viable waverider vehicles that maintain optimum performance across a range of Mach numbers.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In