0

Full Content is available to subscribers

Subscribe/Learn More  >

Harnessing the Quasi-Zero Stiffness From Fluidic Origami for Low Frequency Vibration Isolation

[+] Author Affiliations
Sahand Sadeghi, Suyi Li

Clemson University, Clemson, SC

Paper No. SMASIS2017-3754, pp. V002T03A008; 9 pages
doi:10.1115/SMASIS2017-3754
From:
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5826-4
  • Copyright © 2017 by ASME

abstract

This research investigates a quasi-zero stiffness (QZS) property from the pressurized fluidic origami cellular solid, and examines how this QZS property can be harnessed for low-frequency base excitation isolation. The QZS property originates from the nonlinear geometric relations between folding and internal volume change, and it is directly correlated to the design parameters of the constituent Miura-Ori sheets. Two different structures are studied to obtain a design guideline for achieving QZS: one is identical stacked Miura-Ori sheets (ismo) and the other is non-identical stacked Miura-Ori sheets (nismo). Further dynamic analyses based on numerical simulation and harmonic balance method, indicate that the QZS from pressurized fluidic origami can achieve effective base excitation isolation at low frequencies. Results of this study can become the foundation of origami-inspired metamaterials and metastructures with embedded dynamic functionalities.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In