0

Full Content is available to subscribers

Subscribe/Learn More  >

Internal Porosity Detection in Additively Manufactured Parts via Electromechanical Impedance Measurements

[+] Author Affiliations
Charles Tenney, Mohammad I. Albakri, Joseph Kubalak, Logan D. Sturm, Christopher B. Williams, Pablo A. Tarazaga

Virginia Tech, Blacksburg, VA

Paper No. SMASIS2017-3856, pp. V001T08A009; 7 pages
doi:10.1115/SMASIS2017-3856
From:
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5825-7
  • Copyright © 2017 by ASME

abstract

The flexibility offered by additive manufacturing (AM) technologies to fabricate complex geometries poses several challenges to non-destructive evaluation (NDE) and quality control (QC) techniques. Existing NDE and QC techniques are not optimized for AM processes, materials, or parts. Such lack of reliable means to verify and qualify AM parts is a significant barrier to further industrial adoption of AM technologies.

Electromechanical impedance measurements have been recently introduced as an alternative solution to detect anomalies in AM parts. With this approach, piezoelectric wafers bonded to the part under test are utilized as collocated sensors and actuators. Due to the coupled electromechanical characteristics of piezoelectric materials, the measured electrical impedance of the piezoelectric wafer depends on the mechanical impedance of the part under test, allowing build defects to be detected. This paper investigates the effectiveness of impedance-based NDE approach to detect internal porosity in AM parts. This type of build defects is uniquely challenging as voids are normally embedded within the structure and filled with unhardened model or supporting material. The impact of internal voids on the electromechanical impedance of AM parts is studied at several frequency ranges.

Copyright © 2017 by ASME
Topics: Porosity

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In