Full Content is available to subscribers

Subscribe/Learn More  >

Study of Bioinspired Surgery Needle Advancing in Soft Tissues

[+] Author Affiliations
Mohammad Sahlabadi, Seyedvahid Khodaei, Kyle Jezler, Parsaoran Hutapea

Temple University, Philadelphia, PA

Paper No. SMASIS2017-3915, pp. V001T06A016; 4 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5825-7
  • Copyright © 2017 by ASME


Although needle-based surgeries are considered as minimally invasive surgeries, the damage caused by the needle insertion in soft tissues, namely brain needs to be reduced. Any minor damage, swelling or bleeding in the brain tissue can lead to a long-lasting traumatic brain injury. Our approach to this challenge is to search for a proper solution in nature such as honeybees. In our previous studies, some new bioinspired needles (passive/active) mimicking honeybee stingers have been proposed and tested by conducting needle insertion tests in tissue gel phantoms. The main feature of the bioinspired needles is specially-design barbs on the needle structures. It was discovered that the insertion forces of the bioinspired needles are decreased by as much as 35%, which means that there is a decrease in tissue gel phantom damages. It was also observed that the needle path deflection in the tissue was greatly affected by the reduction in needle bending stiffness and the insertion force. The reduction in the bending stiffness would require lower forces of Nitinol actuators to navigate our smart/active needle inside the tissues. This work specifically aims to investigate the mechanics of the bioinspired needles in bovine brain tissues. The needle insertion tests in real tissues are designed and performed. The insertion mechanics of the bioinspired needles in bovine brain is studied and presented.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In