Full Content is available to subscribers

Subscribe/Learn More  >

Self-Sensing Solid Materials via Delamination Buckling

[+] Author Affiliations
Suihan Liu, Rigoberto Burgueño

Michigan State University, East Lansing, MI

Paper No. SMASIS2017-3984, pp. V001T02A012; 5 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5825-7
  • Copyright © 2017 by ASME


Strain in solid materials under external loads cannot be visualized until they reach a high value or failure occurs; and the common measuring method of using strain sensors is effective but limited to wiring or power supply. In this study, we introduce a new concept of self-sensing solid materials by designing thin surface circular delamination regions on a material body to sense and predict the elastic global strain through controlled elastic local buckling. Delamination buckling is an undesirable failure occurrence in laminated composites under compression. However, it can translate imperceptible small global strains on the main material body to a visible large deformation in the surface of the delaminated region due to buckling. We analytically studied the buckling and post-buckling response of a clamped circular thin plate with unilateral constraint using an energy method to obtain the critical buckling loads, the buckling configurations, and the center out-of-plane displacement under uniaxial and biaxial loading conditions. The results show that for a given buckling configuration in the local region, the global strain condition of the main material body can be predicted. The study thus explores and proves a feasible way to design self-sensing materials through controlled delamination buckling.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In