Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of a 3D-Printed Conductive PLA Material With Electrically Controlled Stiffness

[+] Author Affiliations
Mohammed Al-Rubaiai, Thassyo Pinto, David Torres, Nelson Sepulveda, Xiaobo Tan

Michigan State University, East Lansing, MI

Paper No. SMASIS2017-3801, pp. V001T01A003; 7 pages
  • ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • Snowbird, Utah, USA, September 18–20, 2017
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5825-7
  • Copyright © 2017 by ASME


In this paper, we present characterization results for thermal, mechanical, and electrical properties of a 3D-printed conductive polylactic acid (PLA) composite material. The material exhibits electrically controllable stiffness, allowing for the fabrication of novel robotic and biomedical devices. In particular, an applied voltage induces a Joule heating effect, which modulates the material stiffness. Dumbbell samples are 3D-printed and loaded into a universal testing machine (UTM) to measure their Young’s moduli at different temperatures. The conductive PLA composite shows 98.6% reduction of Young’s modulus, from 1 GPa at room temperature to 13.6 MPa at 80 °C, which is fully recovered when cooled down to its initial temperature. Measurements with differential scanning calorimeter (DSC) and thermal diffusivity analyzer are conducted to investigate the thermal behavior of this material. Electrical conductivity of the material is measured under different temperatures, where the resistivity increases about 60% from 30 °C to 100 °C and hysteresis between the resistivity and the temperature is observed. These tests have shown that the conductive PLA composite has a glass transition temperature (Tg) of 56.7 °C, melting point (Tm) of 153.8 °C, and thermal conductivity of 0.366 W/(mK). The obtained results can be used as design parameters in finite element models and computational tools to rapidly simulate multi-material components for several applications such as object manipulation, grasping, and flow sensing.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In