Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Variational Formulations of Subordinate Oscillator Arrays (SOA) With Linear Piezoelectrics

[+] Author Affiliations
Sai Tej Paruchuri, Andrew J. Kurdila

Virginia Tech, Blacksburg, VA

John Sterling, Amelia Vignola, John Judge, Joe Vignola

Catholic University of America, Washington, DC

Teresa Ryan

East Carolina University, Greenville, NC

Paper No. DETC2017-68056, pp. V008T12A068; 10 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME


It has been shown theoretically that by prescribing the mass and stiffness distributions of a subordinate oscillator array (SOA) that is attached to a host structure, significant vibration attenuation of a host can be obtained over a finite frequency range. This case stands in stark contrast to classical vibration isolator designs for two degree of freedom systems that achieve exact vibration cancellation at a single isolated frequency. Despite the attractiveness of SOAs for the design of broader band vibration suppression, the theoretically desired result can deteriorate rapidly due to small fabrication imperfections in the SOA. This paper introduces and compares variational thermodynamic formulations of composite piezoelectric SOA that are designed to be adjustable in real-time to ameliorate the effects of disorder due to fabrication in a SOA.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In