Full Content is available to subscribers

Subscribe/Learn More  >

An Electromagnetic Energy Harvester for Rotational Applications

[+] Author Affiliations
Ben Gunn, Stephanos Theodossiades, Steve Rothberg

Loughborough University, Loughborough, UK

Tim Saunders

Ford Motor Company, Essex, UK

Paper No. DETC2017-67960, pp. V008T12A066; 9 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME


Many industrial applications incorporate rotating shafts with fluctuating speeds around a desired mean value. This often harmonic component of the shaft speed is generally undesirable, since it can excite parts of the system and can lead to large oscillations (potentially durability issues), as well as to excessive noise generation. On the other hand, the addition of sensors on rotating shafts for system monitoring or control poses challenges due to the need to supply power to the sensor and extract data from the rotating application. In order to tackle the requirement of powering sensors for structure health monitoring or control applications, this work proposes a nonlinear vibration energy harvester design intended for use on rotating shafts with harmonic speed fluctuations. The essential nonlinearity of the harvester allows for increased operating bandwidth, potentially across the whole range of shaft’s operating conditions.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In