0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards Optimizing DC Loads for Power Generation From Arbitrarily Excited Nonlinear Vibration Energy Harvesters

[+] Author Affiliations
Quanqi Dai, Ryan L. Harne

Ohio State University, Columbus, OH

Paper No. DETC2017-67550, pp. V008T12A060; 8 pages
doi:10.1115/DETC2017-67550
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME

abstract

In order to effectively take advantage of stiffness nonlinearities in vibration energy harvesters, the harvesters must be appropriately designed to ensure optimum direct current (DC) power generation. Yet, such optimization has only previously been investigated for alternating current (AC) power generation although most electronics demand DC power for their functioning. Moreover, real world excitations contain stochastic contributions combined with periodic components that challenges conventional approaches of investigation that only give attention to the harmonic excitation parts. To fill in the knowledge gap, this research undertakes comprehensive simulations to begin formulating conclusive understanding on the relationships between rectified power generation and nonlinear energy harvester system characteristics when the platforms are subjected to realistic combinations of harmonic and stochastic excitations. According to the simulation results, the rectified power demonstrates clear dependence on the load resistance in the unique limiting cases of complete or no stochastic excitation. When the excitation vibrations include both harmonic and stochastic components, the optimal resistance to maximize DC power exhibits a smoothly correlated but nonlinear change between the limiting case values of the resistance. The results of this investigation provide direct evidence of the intricate relationships among peak DC power, optimal resistive loads, and the nonlinear energy harvester design, and encourage continued study for direct analytical expressions that define such relationships.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In