Full Content is available to subscribers

Subscribe/Learn More  >

The Accurate Analysis of Magnetic Force of Bi-Stable Piezoelectric Cantilever Energy Harvester

[+] Author Affiliations
Yu-Yang Zhang, Yong-Gang Leng, Sheng-Bo Fan

Tianjin University, Tianjin, China

Paper No. DETC2017-67168, pp. V008T12A056; 8 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME


In the study of nonlinear bi-stable piezoelectric cantilever energy harvesting system, the accuracy of magnetic force’s calculation on which the potential function and dynamics of the system depend is essential to predict the output response and energy harvesting effect. In this paper, we built a shape function to calculate the trace of the end of the beam with the integral of the entire cantilever beam’s slope, and the magnetic force is consequently derived from the achieved magnets’ real-time position and posture using the magnetizing currents method. With the comprehensive consideration of axial magnetic force and lateral magnetic force, the change of both resultant magnetic force’s value and direction are achieved. The simulation results demonstrate that when the displacement of the magnet at the end of the beam is large enough, the axial and lateral magnetic forces change turn from repulsion to attraction, which leads to a large veer of the direction of resultant magnetic force across two quadrants. And the relationship between magnetic force and interval between two magnets is also achieved. The calculation results of this work are nicely consistent with experimental data. So, the accuracy of this calculation method has been proved to be much higher than the existing calculation method.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In