Full Content is available to subscribers

Subscribe/Learn More  >

Non-Reciprocity in Structures With Nonlinear Internal Hierarchy and Asymmetry

[+] Author Affiliations
Matthew D. Fronk, Michael J. Leamy

Georgia Institute of Technology, Atlanta, GA

Sameh Tawfick, Alexander F. Vakakis

University of Illinois at Urbana-Champaign, Urbana, IL

Chiara Daraio

California Institute of Technology, Pasadena, CA

Paper No. DETC2017-67965, pp. V008T12A023; 9 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 29th Conference on Mechanical Vibration and Noise
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5822-6
  • Copyright © 2017 by ASME


Acoustic reciprocity is a property of linear, time invariant systems in which the locations of the source of a forcing and the received signal can be interchanged with no change in the measured response. This work investigates the breaking of acoustic reciprocity using a hierarchical structure consisting of internally-scaled masses coupled with cubically nonlinear springs. Using both direct results and variable transformations of numerical simulations, energy transmission is shown to occur in the direction of decreasing scale but not vice versa, constituting the breaking of acoustic reciprocity locally. When a linear spring connects the smallest scale of such a structure to the largest scale of another identical structure, an asymmetrical lattice is formed. Because of the scale mixing and transient resonance capture that occurs within each unit cell, it is demonstrated through further numerical experiments that energy transmission occurs primarily in the direction associated with the nonlinear coupling from the large to the small scale, thus signifying the breaking of reciprocity globally. This nonlinear hierarchical structure exhibits strong amplitude-dependency in which reciprocity-breaking is associated with specific ranges of excitation amplitudes for both impulse and harmonic forcing.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In