0

Full Content is available to subscribers

Subscribe/Learn More  >

Periodic Motions in a Coupled Van Der Pol-Duffing Oscillator

[+] Author Affiliations
Yeyin Xu, Albert C. J. Luo

Southern Illinois University Edwardsville, Edwardsville, IL

Paper No. DETC2017-67563, pp. V006T10A064; 8 pages
doi:10.1115/DETC2017-67563
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5820-2
  • Copyright © 2017 by ASME

abstract

In this paper, periodic motions of a periodically forced, coupled van der Pol-Duffing oscillator are predicted analytically. The coupled van der Pol-Duffing oscillator is discretized for the discrete mapping. The periodic motions in such a coupled van der Pol-Duffing oscillator are obtained from specified mapping structures, and the corresponding stability and bifurcation analysis are carried out by eigenvalue analysis. Based on the analytical prediction, the initial conditions of periodic motions are used for numerical simulations.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In