0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics and Power Absorption of a Self-React Wave Energy Converter With Mechanical Power Takeoff System

[+] Author Affiliations
Changwei Liang

Stony Brook University, Stony Brook, NY

Xiaofan Li, Dillon Martin, Adam Wise, Robert Parker, Khai Ngo, Lei Zuo

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. DETC2017-67464, pp. V006T10A052; 11 pages
doi:10.1115/DETC2017-67464
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5820-2
  • Copyright © 2017 by ASME

abstract

A self-react wave energy converter which consists of a floating buoy and a submerged body is studied in this paper. The energy is extracted through the relative motion of the floating buoy and submerged body. Two kinds of power takeoff (PTO) system, which is the technique approaches to extract energy from the ocean, are considered for the proposed wave energy converter. One is a ball screw system with mechanical motion rectifier gearbox (which is called MMR system) and another one is solely a ball screw system (which is called non-MMR system as a comparison). The design of the proposed wave energy converter is presented and the model for both power takeoff systems are established based on their mechanisms. A time domain method is adopted to investigate the dynamics and power absorption for the proposed wave energy converter. The effect of equivalent mass on the optimal power and corresponding optimal power takeoff damping are studied both in regular and irregular waves. It is found that the equivalent mass plays different roles in the MMR system and non-MMR system. Due to the disengagement in MMR system, the equivalent mass helps to increase the power absorption at small wave 1periods, both in regular waves and irregular waves. The uncertainty of the drag coefficient on the power absorption of MMR system and non-MMR system is also investigated.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In