0

Full Content is available to subscribers

Subscribe/Learn More  >

Understanding the Effects of Soil Characteristics on Mobility

[+] Author Affiliations
Paramsothy Jayakumar, Dave Mechergui

U.S. Army TARDEC, Warren, MI

Tamer M. Wasfy

Advanced Science and Automation Corp., Indianapolis, IN

Paper No. DETC2017-68314, pp. V006T10A035; 21 pages
doi:10.1115/DETC2017-68314
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5820-2
  • Copyright © 2017 by ASME

abstract

The Army’s mission is to develop, integrate, and sustain the right technology solutions for all manned and unmanned ground vehicles, and mobility is a key requirement for all ground vehicles. Mobility focuses on ground vehicles’ capabilities that enable them to be deployable worldwide, operationally mobile in all environments, and protected from symmetrical and asymmetrical threats. In order for military ground vehicles to operate in any combat zone, mobility on off-road terrains should be extensively investigated. Mobility on off-road terrains is poorly understood because of the empirical and semi-empirical methods used in predicting the mobility map. These methods do not capture the soil deformation as well as its non-linear behavior. The discrete element method (DEM) was identified as a high-fidelity method that can capture the deformation of the soil and its non-linear behavior. The DEM method allows to simulate the vehicle on any off-road terrain and to generate an accurate mobility map.

In this paper, a simulation study was undertaken to understand the influence of soil characteristics on mobility parameters such as wheel sinkage, wheel slip, vehicle speed, and tractive force. The interaction of the vehicle wheels with soft soil is poorly understood, this study helps understand this interaction. A nominal wheeled vehicle model was built in the DIS/IVRESS software and simulated over different cohesive and non-cohesive soils modeled using DEM. Some characteristics of these soils were varied namely, the soil inter-particle cohesion, the soil inter-particle friction, the soil particle size, and the soil density. The mobility parameters were measured and correlated to the soil characteristics. This study showed that the vehicle speed increased with cohesion, friction, soil density, and particle size, while wheel sinkage and wheel slip decreased with those parameters. The influence of these characteristics combined is more complex; extensive studies of other soil characteristics need to be carried out in the future to understand their effect on vehicle mobility.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In