Full Content is available to subscribers

Subscribe/Learn More  >

Kinematic Analysis of the Lolotte Technique in Rock Climbing

[+] Author Affiliations
Alessio Artoni, Matilde Tomasi, Francesca Di Puccio

University of Pisa, Pisa, Italy

Paper No. DETC2017-67595, pp. V006T10A002; 9 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5820-2
  • Copyright © 2017 by ASME


The lolotte or drop-knee technique is a fundamental of rock climbing that particularly involves lower limbs, and especially knee joints. To the authors’ best knowledge, no biomechanical analysis of the lolotte seems to have ever been conducted, despite its widespread use. As a first contribution to this research topic, the present work deals with an athlete-specific kinematic analysis of the lolotte aimed at quantifying the hip and knee joint angle trajectories and knee ligament strains. A marker-based motion capture system was employed to track the execution of the lolotte on a purposely designed climbing structure. The marker trajectories were then used as input for a numerical simulation in the OpenSim program, where an athlete-specific musculoskeletal model was set up to perform an inverse kinematics analysis and obtain the joint angle trajectories as well as their ranges of motion. Further processing of the model allowed to estimate the strain of the knee medial collateral ligament. Such kinematic analysis revealed characteristic hip and knee joint angle patterns and highlighted a critical phase in which the knee is considerably abducted (increased valgus). As a consequence, the medial collateral ligament is remarkably recruited, thereby substantiating the claim diffused among climbers that drop-kneeing may cause ligament injury.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In