0

Full Content is available to subscribers

Subscribe/Learn More  >

The Snap-Through of Four-Fold Origami Cones

[+] Author Affiliations
Alexander Pagano, S. Tawfick

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2017-68244, pp. V05BT08A059; 9 pages
doi:10.1115/DETC2017-68244
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 41st Mechanisms and Robotics Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5818-9
  • Copyright © 2017 by ASME

abstract

Some insects, such as beetles, are able to store their wings under their elytra by folding them and can rapidly deploy their wings for flight. The crease patterns of these wings allow the fold/unfold kinematics to take place using simple manipulation, and to remain stable in both configurations. It has been observed that the structures of the beetle wings are kinetically multi-stable origami. The crease pattern of these wings is comprised of a peculiar arrangement of four-fold vertices. In this manuscript, we show preliminary work towards studying the non-flat (conical) four-fold vertices observed in the wing structure using experiments and rigid origami analysis. We construct four-fold origami paper cones of varying angles and study their snap-through behavior under varying point-load configurations. From these experiments, the threshold forces, displacements and duration timescale of snap-through buckling are extracted. Similarly, we study the snap-through instability of two-dimensional (2D) arches having a vertex, which provide insights into the wing folds and are hypothesized to represent properties which facilitate the deployability of the wing. Using the pseudo-rigid body model (PRBM) [1], we numerically analyze the kinematics and potential energy of the snap-though buckling of 2D arches, and show that the model captures the kinematic behavior sufficiently well to provide insights of energetic behavior from kinematic experimental results. Overall, our approach shows promise in studying the design and kinetics of the insect wing origami, and could enable the design of bio-inspired deployable engineering structures.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In