Full Content is available to subscribers

Subscribe/Learn More  >

A Framework for the Design and Optimization of Self-Folding Structures

[+] Author Affiliations
Landen Bowen, Mary Frecker, Timothy W. Simpson, Rebecca Strzelec

Pennsylvania State University, University Park, PA

Paper No. DETC2017-68203, pp. V05BT08A058; 11 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 41st Mechanisms and Robotics Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5818-9
  • Copyright © 2017 by ASME


Due to the multidisciplinary nature and complexity of self folding structures, it can be difficult to know where to start when designing for a new application. Decisions about the active and passive materials to be used and the functionality of the design are very interrelated and can create problems if not considered holistically. There is a need to formalize the steps necessary to move from an origami-inspired shape to a full self-folding concept.

In this paper, an optimization framework is proposed to help designers create self-folding, origami-inspired structures that can accommodate any type of active material. The optimization framework formalizes the design steps needed to move from a target shape/application to a self-folding design. The method is simulation-based, allowing a self-folding design candidate to be identified quickly prior to costly trial-and-error physical prototyping. A general version of the framework is presented that can accommodate a variety of simulation and optimization methods, after which a specific implementation of the framework utilizing a dynamic model and trade space exploration tools is discussed and then used to design a multi-field self-folding carton.

By using the framework, a novel design was identified that both significantly decreased the folding error as well as the amount of active material used when compared to designs that would typically be attempted in a trial-by-error design approach. The demonstrated self-folding design optimization framework has the potential to streamline the design of self-folding structures, resulting in better designs with less time, effort, and cost.

Copyright © 2017 by ASME
Topics: Design , Optimization



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In