Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Spatial Six-Bar Flapping Wing Mechanism for Combined Control of Swing and Pitch

[+] Author Affiliations
Peter L. Wang, J. Michael McCarthy

University of California, Irvine, CA

Paper No. DETC2017-68266, pp. V05BT08A027; 7 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 41st Mechanisms and Robotics Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5818-9
  • Copyright © 2017 by ASME


This paper presents a design procedure to achieve a flapping wing mechanism for a micro air vehicle that drives both the swing and pitch movement of the wing with one actuator. The mechanism combines a planar four bar linkage with a spatial RSSR attached to the input and output links forming a spatial Stephenson six-bar linkage. Function generation synthesis yields a planar four-bar that controls the wing swing profile. The pitch control is synthesized by inverting the movement of the combined system to isolate and compute the SS chain. In order to ensure the design achieves the specified task precision points, the SS chain was randomized within a prescribed tolerance zone. The result was 29 designs, one of which is presented in detail.

Copyright © 2017 by ASME
Topics: Design , Wings



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In