0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Multi-Directional Hybrid-Locomotion Modular Robot With Feedforward Stability Control

[+] Author Affiliations
Prashant Kumar, Wael Saab, Pinhas Ben-Tzvi

Virginia Tech, Blacksburg, VA

Paper No. DETC2017-67436, pp. V05BT08A010; 10 pages
doi:10.1115/DETC2017-67436
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 41st Mechanisms and Robotics Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5818-9
  • Copyright © 2017 by ASME

abstract

This paper presents the design of a modular robot capable of multi-directional mobility to aid reconfiguration on uneven terrain. Modular reconfigurable robotic systems consist of a large number of self-sufficient modules that can dock and reconfigure to scale locomotion and manipulation capabilities. However, on uneven terrains, reconfigurable robots face challenges due to the requirement of precise alignment between modules during the docking procedure. First, a survey of current modular reconfigurable robots is presented, analyzing their strengths and shortcomings in reconfiguration and mobility. A novel design is formulated that features a hybrid combination of wheels and tracks, symmetrically assembled about the front and right planes, providing multi-directional mobility and modularity. The robot can move over uneven terrain via tracks, move at higher speeds via wheels placed orthogonally to the tracks, and move in the vertical direction via a vertical translation mechanism in order to aid in multi-robot docking. Both the wheels and tracks possess yaw mobility via differential drive. The design’s compact size and hybrid multi-directional mobility system make the robot highly mobile on uneven terrain. Presented in this paper are the mechanical and electrical design and a feedforward dynamic stability controller, the performance of which is validated using a simulated case study.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In