0

Full Content is available to subscribers

Subscribe/Learn More  >

Developing and Comparing Alternative Design Optimization Formulations for a Vibration Absorber Example

[+] Author Affiliations
Siyao Luan, Deborah L. Thurston, Madhav Arora, James T. Allison

University of Illinois at Urbana Champaign, Urbana, IL

Paper No. DETC2017-68337, pp. V004T05A004; 12 pages
doi:10.1115/DETC2017-68337
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5816-5
  • Copyright © 2017 by ASME

abstract

In some cases, the level of effort required to formulate and solve an engineering design problem as a mathematical optimization problem is significant, and the potential improved design performance may not be worth the excessive effort. In this article we address the tradeoffs associated with formulation and modeling effort. Here we define three core elements (dimensions) of design formulations: design representation, comparison metrics, and predictive model. Each formulation dimension offers opportunities for the design engineer to balance the expected quality of the solution with the level of effort and time required to reach that solution. This paper demonstrates how using guidelines can be used to help create alternative formulations for the same underlying design problem, and then how the resulting solutions can be evaluated and compared. Using a vibration absorber design example, the guidelines are enumerated, explained, and used to compose six alternative optimization formulations, featuring different objective functions, decision variables, and constraints. The six alternative optimization formulations are subsequently solved, and their scores reflecting their complexity, computational time, and solution quality are quantified and compared. The results illustrate the unavoidable tradeoffs among these three attributes. The best formulation depends on the set of tradeoffs that are best in that situation.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In