0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Paravalvular Leakage in Novel Mechanical Heart Valve

[+] Author Affiliations
Ankit Saxena

Innovator Lab Consultants India Pvt. Ltd., New Delhi, India

Rohan Shad

University College of Medical Sciences, New Delhi, India

Mrudang Mathur, Anwesha Chattoraj

Delhi Technological University, New Delhi, India

Sujay Shad

Sir Ganga Ram Hospital, New Delhi, India

Paper No. DETC2017-67729, pp. V003T13A007; 5 pages
doi:10.1115/DETC2017-67729
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5815-8
  • Copyright © 2017 by ASME

abstract

We developed a new mechanical heart valve prototype with a unique mechanism for attachment to cardiac tissue. The development of novel prosthetic heart valve systems requires careful assessment of paravalvular leaks — leakage of fluid that takes place between the valve and the cardiac tissue it is attached to. Traditional methods of testing paravalvular leaks in flow chambers are not ideal for novel devices and may underestimate its true extent. In this paper we developed a novel method of quantifying paravalvular leaks involving the use of 3D printed prototype heart valves and cadaveric bovine hearts, and compared the results with those from commercially available Medtronic ATS mechanical bileaflet valves. The average leak in our final prototype heart valves were found to be 0.13 ml/sec, compared to 0.33 ml/sec in the ATS valve.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In