Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Collision-Free Path Planning for an Autonomous Multi-Wheeled Combat Vehicle

[+] Author Affiliations
Amr Mohamed, Moustafa El-Gindy, Jing Ren, Haoxiang Lang

UOIT, Oshawa, ON, Canada

Paper No. DETC2017-67025, pp. V003T01A002; 10 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5815-8
  • Copyright © 2017 by ASME


This paper presents an optimal collision-free path planning algorithm of an autonomous multi-wheeled combat vehicle using optimal control theory and artificial potential field function (APF). The optimal path of the autonomous vehicle between a given starting and goal points is generated by an optimal path planning algorithm. The cost function of the path planning is solved together with vehicle dynamics equations to satisfy the vehicle dynamics constraints and the boundary conditions. For this purpose, a simplified four-axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw dynamics while neglecting roll dynamics is used. The obstacle avoidance technique is mathematically modeled based on the proposed sigmoid function as the artificial potential field method. This potential function is assigned to each obstacle as a repulsive potential field. The inclusion of these potential fields results in a new APF which controls the steering angle of the autonomous vehicle to reach the goal point. A full nonlinear multi-wheeled combat vehicle model in TruckSim software is used for validation. This is done by importing the generated optimal path data from the introduced optimal path planning MATLAB algorithm and comparing lateral acceleration, yaw rate and curvature at different speeds (9 km/h, 28 km/h) for both simplified and TruckSim vehicle model. The simulation results show that the obtained optimal path for the autonomous multi-wheeled combat vehicle satisfies all vehicle dynamics constraints and successfully validated with TruckSim vehicle model.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In