0

Full Content is available to subscribers

Subscribe/Learn More  >

Sequential Kriging Optimization for Time-Variant Reliability-Based Design Involving Stochastic Processes

[+] Author Affiliations
Mingyang Li, Zequn Wang

MTU, Houghton, MI

Paper No. DETC2017-67426, pp. V02AT03A042; 11 pages
doi:10.1115/DETC2017-67426
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 43rd Design Automation Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5812-7
  • Copyright © 2017 by ASME

abstract

This paper presents a sequential Kriging optimization approach (SKO) for time-variant reliability-based design optimization (tRBDO) with the consideration of stochastic processes. To handle the extremely high dimensionality associated with time-variant uncertainties, stochastic processes are transformed to random parameters through the equivalent stochastic transformation, leading to equivalent time-independent reliability models that are capable of capturing system failures over time. To alleviate computational burden, Kriging-based surrogate modeling is utilized to predict the response of engineered systems. It is further integrated with Monte Carlo simulation (MCS) to approximate the probability of failure. To reduce the epistemic uncertainty due to the lack of data, a maximum confidence enhancement method (MCE) is employed to iteratively identify important points for updating surrogate models. Sensitivities of reliability with respect to design variables are estimated using the first-order score function in the proposed tRBDO framework. Two case studies are introduced to demonstrate the efficiency and accuracy of the proposed approach.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In