0

Full Content is available to subscribers

Subscribe/Learn More  >

Topology Optimization for Additive Manufacturing Considering Layer-Based Minimum Feature Sizes

[+] Author Affiliations
Mikhail Osanov, James K. Guest

Johns Hopkins University, Baltimore, MD

Paper No. DETC2017-68383, pp. V02AT03A036; 8 pages
doi:10.1115/DETC2017-68383
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 43rd Design Automation Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5812-7
  • Copyright © 2017 by ASME

abstract

The rapid advance of additive manufacturing technologies has provided new opportunities for creating complex structural shapes. In order to fully exploit these opportunities, however, engineers must re-think the design process and leverage these new capabilities while respecting manufacturing constraints inherent in various processes. Topology optimization, as a free-from design tool, is a potentially powerful approach to addressing this design challenge provided the manufacturing process is properly accounted for. This work examines geometric constraints related to feature size and the layer-by-layer nature of the manufacturing process. A simple modification to the Heaviside Projection Method, an approach for naturally achieving geometric constraints in topology optimization, is proposed and demonstrated to have clear, understandable impact on three-dimensional optimized beam designs.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In