0

Full Content is available to subscribers

Subscribe/Learn More  >

A Decentralized Approach for Multi-Subsystem Co-Design Optimization Using Direct Collocation Method

[+] Author Affiliations
Tianchen Liu, Shapour Azarm, Nikhil Chopra

University of Maryland, College Park, MD

Paper No. DETC2017-67906, pp. V02AT03A004; 13 pages
doi:10.1115/DETC2017-67906
From:
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 43rd Design Automation Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5812-7
  • Copyright © 2017 by ASME

abstract

Multi-subsystem co-design refers to the simultaneous optimization of physical plant and controller of a system decomposed into multiple interconnected co-design subsystems. In this paper, a new decentralized approach based on the direct collocation and decomposition-based optimization methods is formulated to solve multi-subsystem co-design problems. First, the problem is decomposed into physical plant and control parts. In the control part, the entire time horizon is discretized into subintervals and grid points. In this way, a continuous optimal control problem is converted into a finite dimensional nonlinear programming (NLP) problem. The optimality condition decomposition (OCD) method is employed to decompose and solve the converted NLP problem in a decentralized manner. Next, the dual decomposition method is used to optimize the plant part. Finally, the plant and control parts are connected by the gradients of Hamiltonian with respect to the plant variables. The proposed approach is applied to two examples. First, a numerical example is presented to illustrate the approach step-by-step. Then in the second example, a spring-mass-damper system is solved. For both examples, the solutions obtained by the proposed decentralized approach are compared against a centralized (all-in-one) approach.

Copyright © 2017 by ASME
Topics: Design , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In