Full Content is available to subscribers

Subscribe/Learn More  >

Natural Finger Interaction for CAD Assembly Modeling

[+] Author Affiliations
Marius Fechter, Sandro Wartzack

Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany

Paper No. DETC2017-67555, pp. V001T02A041; 9 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 37th Computers and Information in Engineering Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5811-0
  • Copyright © 2017 by ASME


In current CAD software the process of assembly modeling is hindered by a large number of separate rotation and translation actions necessary, especially in case of larger assemblies. Additionally matching faces, edges or points must be selected by clicking to define the appropriate constraint. In contrast to that, the process of assembling two normal sized physical parts in the real world seems to be rather simple. That is because we know how to grasp and move objects with our hands intuitively from our everyday experience. The idea behind this contribution is to enable the product developer to assemble CAD parts in a virtual environment through natural finger interaction like in reality. Therefore we present an overall method that combines the natural finger interaction with virtual objects and the insertion of constraints between rotationally symmetric CAD parts. The developed algorithms identify matching surfaces on the basis of the geometry as well as position and orientation of the parts in 3D space. This paper highlights the method to use a combination of real-time physics simulation and a heuristic approach to achieve an intuitive interaction interface. Additionally, we describe the detection algorithms developed to find assembly relationships between rotationally symmetric CAD parts without prior constraint definition. We also present a prototype system to demonstrate the functionality of the overall method. Furthermore, challenges for future research, such as extending the functionality of the detection algorithms on additional part types, like non-rotationally symmetric shapes, are discussed.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In