Full Content is available to subscribers

Subscribe/Learn More  >

Recent Developments of the Multiphysics Discrete Element Method for Additive Manufacturing Modeling and Simulation

[+] Author Affiliations
John C. Steuben, Athanasios P. Iliopoulos, John G. Michopoulos

U.S. Naval Research Laboratory, Washington, DC

Paper No. DETC2017-67597, pp. V001T02A025; 12 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 37th Computers and Information in Engineering Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5811-0


Recent years have seen a sharp increase in the development and usage of Additive Manufacturing (AM) technologies for a broad range of scientific and industrial purposes. The drastic microstructural differences between materials produced via AM and conventional methods has motivated the development of computational tools that model and simulate AM processes in order to facilitate their control for the purpose of optimizing the desired outcomes. This paper discusses recent advances in the continuing development of the Multiphysics Discrete Element Method (MDEM) for the simulation of AM processes. This particle-based method elegantly encapsulates the relevant physics of powder-based AM processes. In particular, the enrichment of the underlying constitutive behaviors to include thermoplasticity is discussed, as are methodologies for modeling the melting and re-solidification of the feedstock materials. Algorithmic improvements that increase computational performance are also discussed. The MDEM is demonstrated to enable the simulation of the additive manufacture of macro-scale components. Concluding remarks are given on the tasks required for the future development of the MDEM, and the topic of experimental validation is also discussed.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In