0

Design of a Rotatable One-Element Snake Bone for NOTES PUBLIC ACCESS

[+] Author Affiliations
Aoyu Zhang, Bin Liu, Tianyu Xie

Peking University, Beijing, China

John Liu

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DMD2017-3410, pp. V001T08A014; 2 pages
doi:10.1115/DMD2017-3410
From:
  • 2017 Design of Medical Devices Conference
  • 2017 Design of Medical Devices Conference
  • Minneapolis, Minnesota, USA, April 10–13, 2017
  • ISBN: 978-0-7918-4067-2
  • Copyright © 2017 by ASME

abstract

Over the past decade, natural orifice transluminal endoscopic surgery (NOTES) has developed out of a merger of endoscopy and surgery [1]. NOTES offers the advantages of avoiding external incisions and scars, reducing pain, and shortening recovery time by using natural body orifices as the primary portal of entry for surgeries [2]. The NOTES platform consists of a flexible, hollow body — enabling travel in the interior of the human body — and the distal end (head), the mechanical structure of which is based off of the snake bone. After the distal end passes through a natural orifice, through a transluminal opening of the stomach, vagina, bladder, or colon, and reaches the target working place in the peritoneal cavity, several therapeutic and imaging tools can be passed through the hollow conduit of the NOTES’ body for surgeries [3].

The traditional snake bone design presents two major problems. First, the movement is constrained to two bending degrees-of-freedom (DOF). A need to reorient the tool then often requires the entire body to be rotated by the physician, an unwieldly manipulation that both hinders convenience and results in imprecise control. Second, the traditional fabrication process is tedious and therefore lends to higher manufacturing costs; the bending joints must be first individually machined then assembled together piece-by-piece using rotation pins.

We propose a novel design for the snake bone that introduces an additional DOF via rotation and is simple and cost-effective to machine. The revised snake bone design features rotation segments controlled by wires that a physician can readily manipulate for increased control and convenience. Further, because surgical tools that pass through the NOTES body conduit are also installed on snake bone structures, the introduction of rotation to the snake bone design increases each tool’s mobility and manipulation. This advance therefore presents the potential to decrease both the number of required tools and the overall diameter of the NOTES body. Finally, the body is machined as a single element and therefore minimizes the work of assembly.

Copyright © 2017 by ASME
Topics: Bone , Design
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In