0

Instrument Guidance System for MRI-Guided Percutaneous Spinal Interventions PUBLIC ACCESS

[+] Author Affiliations
Alexander Squires, Zion Tsz Ho Tse

University of Georgia

John Oshinski

Emory University

Paper No. DMD2017-3400, pp. V001T08A013; 2 pages
doi:10.1115/DMD2017-3400
From:
  • 2017 Design of Medical Devices Conference
  • 2017 Design of Medical Devices Conference
  • Minneapolis, Minnesota, USA, April 10–13, 2017
  • ISBN: 978-0-7918-4067-2
  • Copyright © 2017 by ASME

abstract

In Amyotrophic Lateral Sclerosis (ALS), neurons controlling voluntary muscles die, resulting in muscle weakness. Small animal studies have shown that neurons experience some regeneration when stem cells are injected into the ventral horn of the spinal cord [1]. These results led to large animal and human trials investigating the effects of injecting stem cells into the spinal cord. Direct injection is used for delivering cells as cells do not have to migrate to the therapy site and visual confirmation is possible [2]. This requires a multi-level laminectomy as well as dissection of the dura mater to expose the cell delivery site. In order to adopt this ALS treatment in regular clinical workflow, a minimally invasive alternative for spinal cord cell therapy is desirable.

Image-guided needle targeting and positioning systems have been developed by numerous groups which use computed tomography or ultrasound for image guidance. However, MRI must be used for this ALS study because it is the only imaging system capable of visualizing the necessary anatomical locations for delivering cellular therapeutics to the spinal cord; the cell therapy target is the gray matter within the ventral horn of the spinal cord, and only MRI can detect the contrast between gray and white matter. Innomotion and NeuroArm have been used for MRI-guided interventions [3, 4] but they are complex, take a long time to set up, and take up a great deal of space in the MRI bore. An initial solution by our research group provided targeting solutions using an adjustable template on the spine, but was manually adjusted, targeted solely on a grid, and lacked a second rotation axis[5].

The presented device, SpinoBot, percutaneously directs therapeutics under MRI guidance into the spinal cord, allowing accurate and minimally invasive spinal therapies. This study examines the accuracy and workflow of MRI-guided cellular therapeutics injections using SpinoBot, a targeting and injection needle guidance system.

Copyright © 2017 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In