0

Nanomagnetic Biosensor for the Detection of Porcine Interferon Gamma PUBLIC ACCESS

[+] Author Affiliations
Wei Wang, Hamada A. Aboubakr, Sagar M. Goyal, James Collins

University of Minnesota, St. Paul, MN

James Vang, Victor Brenk

Zepto Life Technology, LLC, St. Paul, MN

Paper No. DMD2017-3375, pp. V001T07A001; 2 pages
doi:10.1115/DMD2017-3375
From:
  • 2017 Design of Medical Devices Conference
  • 2017 Design of Medical Devices Conference
  • Minneapolis, Minnesota, USA, April 10–13, 2017
  • ISBN: 978-0-7918-4067-2
  • Copyright © 2017 by ASME

abstract

Due to the anatomical and physiological similarities to humans that include similar heart size, flow rate, skin, liver enzymes and bone healing, porcine models as a powerful investigational platform have been widely used in research areas such as diabetes, obesity and islet transplantation [1]. The advantages of relative low cost, ease in handling and comparatively short period of breeding time may make swine provide a promising solution to the shortage of human donors and difficulty in isolating purified islets from adult human in future. Porcine cytokines play a significant role in innate immunity, apoptosis, angiogenesis, cell growth and differentiation. They are involved in cellular responses, maintenance of homeostasis, and disease states such as inflammatory disease, cardiovascular disease, and cancer. Thus, the technologies to analyze the expression of cytokines are developed rapidly and are still hot topics. The traditional approach for cytokine detection and quantification is the use of an enzyme-linked immunosorbent assay (ELISA). However, its inability to do multiplex test calls for more robust detection system. Biochip-based assay for the detection of biological agents using giant magnetoresistive (GMR) sensors and magnetic nanoparticles have emerged recently [2, 3]. It is proved that the nanomagnetic biosensor technology has advantages of low cost, high sensitivity, multiplexity, and real-time signal readout. The integration of GMR biosensor and use of weak magnetic fields allow to eventually realize point-of-care and portability. In addition, interferon gamma (IFNγ) is one of the most important porcine cytokines, and is associated with a number of autoinflammatory and autoimmune diseases. In this work, IFNγ is selected as a model target for the detection of porcine cytokine using nanomagnetic GMR biosensor.

Copyright © 2017 by ASME
Topics: Biosensors
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In