Full Content is available to subscribers

Subscribe/Learn More  >

Application Driven Reliability Research of Next Generation for Automotive Electronics: Challenges and Approaches

[+] Author Affiliations
Sven Rzepka, Alexander Otto, Dietmar Vogel, Rainer Dudek

Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz, Germany

Paper No. IPACK2017-74208, pp. V001T05A008; 11 pages
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • San Francisco, California, USA, August 29–September 1, 2017
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5809-7
  • Copyright © 2017 by ASME


The revolutionary changes in automotive industry towards fully connected automated electrical vehicles necessitates developments in automotive electronics at unprecedented speed. Signal, control, and power electronics will heterogeneously be integrated at minimum space with sensors and actuators to form highly compact and ultra-smart systems for functions like traction, lighting, energy management, computation, and communication. Most of these systems will be highly safety relevant with the requirements in system availability exceeding today’s already high automotive standards. Other than the human drivers of today, passengers in the automated car do not pay constant attention to the driving actions of the vehicle. Hence, reliability research is massively challenged by the new automotive applications. Guaranteeing the specified lifetime at statistical average is no longer sufficient. Assuring that no failure of an individual safety relevant part occurs unexpectedly, becomes most important. The paper surveys the priority actions underway to cope with the tremendous challenges. It highlights practical examples in all three directions of reliability research. i) Experimental reliability tests and physical analyses: New and highly efficient accelerated stress tests are able to cover the complex and multi-fold loading situation in the field. New analytics techniques can identify the typical failure modes and their physical root causes. ii) Virtual techniques: Schemes of validated simulations allow capturing the physics of failure proactively in the design for reliability process. iii) Prognostics health management (PHM): A new concept is introduced for adding a minimum of PHM features at the various levels of automotive electronics to provide functional safety as required for autonomous vehicles. This way, the new generation of reliability methods will continuously provide estimates of the remaining useful life (RUL) for each relevant part under the actual use conditions to allow triggering maintenance in time.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In