0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction and Mitigation of Vertical Cracking in High-Temperature Transient Liquid Phase Sintered Joints by Thermo-Mechanical Simulation

[+] Author Affiliations
Hannes Greve, S. Ali Moeini, Patrick McCluskey

University of Maryland, College Park, MD

Shailesh Joshi

Toyota Research Institute of North America, Ann Arbor, MI

Paper No. IPACK2017-74138, pp. V001T04A003; 10 pages
doi:10.1115/IPACK2017-74138
From:
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • San Francisco, California, USA, August 29–September 1, 2017
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5809-7
  • Copyright © 2017 by ASME

abstract

Transient Liquid Phase Sintering (TLPS) is a novel high temperature attach technology. It is of particular interest for application as a die attach in power electronic systems because of its high melting temperature and high thermal conductivity. TLPS joints formed from sinter pastes are comprised of metallic particles embedded in matrices of Intermetallic Compounds (IMCs). Compared to conventional solder attach, TLPS joints contain a considerably higher percentage of brittle IMCs. This raises the concern that TLPS joints are susceptible to brittle failure. In this paper we describe and analyze the cooling-induced formation of vertical cracks as a newly detected failure mechanism unique to TLPS joints.

In a power module structure with a TLPS joint as interconnect between a power device and a Direct Bond Copper (DBC) substrate, cracks can form between the interface of the DBC and the TLPS joint when large voids are located in the proximity of the DBC. These cracks do not appear in regions with smaller voids. A method has been developed for the three-dimensional modeling of paste-based TLPS sinter joints that possess complex microstructures with heterogeneous distributions of metal particles and voids in IMC matrices. Thermo-mechanical simulations of the post-sintering cooling process have been performed and the influence of microstructure on the stress-response within the joint and at the joint interfaces have been characterized for three different material systems (Cu+Cu6Sn5, Cu+Cu3Sn, Ni+Ni3Sn4).

The maximum principal stress within the assembly was found to be a poor indicator for prediction of vertical crack formation. In contrast, stress levels at the interface between the TLPS joint and the power substrate metallization are good indicators for this failure mechanism. Small voids lead to higher joint maximum principal stresses, but large voids induce higher interfacial stresses, which explain why the vertical cracking failure was only observed in joints with large voids.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In