Full Content is available to subscribers

Subscribe/Learn More  >

Flow Distribution and Nucleation Suppression in a Small Form Factor Liquid Immersion Cooled Server Model

[+] Author Affiliations
Sriram Chandrasekaran, Sushil Bhavnani

Auburn University, Auburn, AL

Paper No. IPACK2017-74025, pp. V001T02A022; 10 pages
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • San Francisco, California, USA, August 29–September 1, 2017
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5809-7
  • Copyright © 2017 by ASME


The rapid growth of the global network infrastructure has resulted in a sharp increase in the number and size of data center facilities. Total data center power consumption now represents a significant fraction of global electricity production. To conserve natural resources, and to satisfy the cooling demands of compact, powerful electronics, thermal management strategies with high heat transfer coefficients must be employed. Two-phase liquid immersion cooling is one such strategy that has been gaining momentum in commercial cooling applications over recent years. The work discussed in this paper provides information on two different flow boiling investigations performed on vertically oriented surfaces in a small form factor server model. Two different types of surfaces — bare silicon, and silicon surfaces attached with microfinned heat sinks were tested in this study. Novec 649 dielectric fluid was used as the primary working fluid. The first investigation compares the thermal performance of parallel and impinging flow distribution systems, for different subcooling and flow rate conditions. The second investigation is on nucleation suppression in flow boiling for the parallel and impinging flow distribution systems. In this study, flow rates ranging from 0 ml/min to 1650 ml/min were tested and high-speed imaging was performed to capture the change in bubble characteristics. The resulting observations, including highest heat flux values supported without nucleation activity, are reported and discussed.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In