0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Sustained Exposure to Temperature and Humidity on the Reliability and Performance of MEMS Microphone

[+] Author Affiliations
Pradeep Lall, Amrit Abrol

Auburn University, Auburn, AL

David Locker

US AMRDEC, Huntsville, AL

Paper No. IPACK2017-74252, pp. V001T01A022; 16 pages
doi:10.1115/IPACK2017-74252
From:
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems
  • ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • San Francisco, California, USA, August 29–September 1, 2017
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5809-7
  • Copyright © 2017 by ASME

abstract

MEMS microphones are extensively used in many applications that require reliability, small size, and high sound quality. For harsh environment reliability data MEMS microphones need to be monitored under conditions mimicking their areas of applications. MEMS microphones have an opening/sound port in order to interact with the environment, therefore cannot be sealed completely since the sensing mechanism requires interaction between sound waves and the sensing element. Little to no information exists on reliability data for MEMS microphones under low/high temperature operating life and temperature humidity bias condition. Our work is primarily focused on providing harsh environmental reliability data which can be useful to MEMS designers and engineers. In this paper the test vehicles with MEMS Microphones have been tested under three different harsh environmental conditions: high temperature operating life (HTOL) at 125°C at 3.3V, low temperature storage (LTS) at −35°C and temperature humidity 85°C/85%RH at 3.3V. The main motive of this study is to document the incremental shift and degradation in output parameters namely distortion, frequency response, power supply rejection capability of IC, frequency vs pressure characteristics and analog output voltage of the MEMS microphone. The survivability of MEMS microphone, ADMP401, has been demonstrated as a function of change in the output parameters. Failure analysis has been conducted on the microphone samples to study failure modes and sites using analytical methods such as SEM, EDS and X-ray.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In