Full Content is available to subscribers

Subscribe/Learn More  >

Experiment Verification of Seismic Isolation Device Having Charging Function

[+] Author Affiliations
Takashi Yamaguchi, Hayato Nakakoji, Nanako Miura, Akira Sone

Kyoto Institute of Technology, Kyoto, Japan

Paper No. PVP2017-65593, pp. V008T08A045; 7 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5803-5
  • Copyright © 2017 by ASME


In late years, many base isolated structures are planned as seismic design, because they suppress vibration response significantly against large earthquake. In addition, to achieve greater safety, semi-active or active vibration control system is installed in the structures as. Semi-active and active vibration control systems are more effective to large earthquake than passive one vibration control system in terms of vibration reduction. However semi-active and active vibration control systems cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation device which achieves active control system using regenerated vibration energy. This device doesn’t require external energy to produce control force.

The purpose of this paper is to propose the seismic isolation device having charging function and verified its performance by experiment. In our previous research[1], we proposed the new model and optimized the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, we proposed the model which is superior to the previous model in terms of vibration reduction and energy regeneration.

In this study, we conducted an experiment and show its results. As a results, we confirmed the vibration reduction and energy regeneration of the seismic isolation device having charging function.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In