Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Nickel Alloy 600 Strain Hardening Recovery

[+] Author Affiliations
Antoine Andrieu, Gilles Rolland

EDF, Moret sur Loing, France

Frederique Rossillon, David Albrecht

EDF SEPTEN, Lyon, France

Sofiane Hendili

EDF, Chatou, France

Paper No. PVP2017-66137, pp. V06BT06A071; 7 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5800-4
  • Copyright © 2017 by ASME


Prediction of residual stresses in welds is essential in order to evaluate the integrity of a component subject to degradation mechanisms such as Stress Corrosion Cracking. During welding operations, complex thermo-mechanical and metallurgical processes take place and lead to microstructural changes such as dynamic recovery and dynamic recrystallization. These microstructural changes induce a modification of hardening behavior that should be taken into account to accurately evaluate residual stresses through numerical simulations. A large test campaign was carried out in order to measure the recovery and recrystallization kinetics of Ni base alloy 600. Tests consisted in introducing 20% of plastic-strain at room temperature and then applying a thermal cycle with a Gleeble heat treatment simulator under stress release conditions. The comparison of mechanical properties prior to heat treatment and after heat treatment allows the evaluation of the recovery parameter that could be considered during welding numerical simulations. During this test campaign, various thermal cycles were applied. Experimental results show that the whole data points can be described as a function of Larson-Miller parameter. Mechanical results, metallurgical investigations and first numerical simulations are also presented in this paper.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In