Full Content is available to subscribers

Subscribe/Learn More  >

A Case Study of a Cooling Pipe for a Pre-Cooler Used in a 70-MPa Hydrogen Station

[+] Author Affiliations
Saburo Okazaki, Hisao Matsunaga, Shigeru Hamada, Masami Nakamura, Saburo Matsuoka

Kyushu University, Fukuoka, Japan

Hisatake Itoga

Hydrogen Energy Test and Research Center, Fukuoka, Japan

Paper No. PVP2017-65435, pp. V06BT06A035; 10 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5800-4
  • Copyright © 2017 by ASME


A case study was conducted on the cooling pipe of a precooler which had been used in a 70-MPa hydrogen station demonstration project. The cooling pipe consisted of a main pipe, a mechanical joint pipe and a mechanical joint. The main and mechanical joint pipes had been joined using TIG welding. Through chemical composition analysis, microstructure observation and Vickers hardness measurement, it was revealed that the main and mechanical joint pipes had been manufactured from SUS316L and that 316L was the filler metal used for TIG welding. Round-bar specimens were machined out of the main pipe in order to investigate the tensile properties of the base metal. On the other hand, both round-bar specimen without reinforcement and square-bar specimens with reinforcement were fabricated from the weld-joint. Using the three types of specimens, slow strain rate tensile tests were performed in 0.1 MPa nitrogen gas and in 115 MPa hydrogen gas at a temperature of −40 °C. Reduction of area (RA), φ, for the round base-metal specimen, the round weld-joint specimen and the square weld-joint specimen were respectively, 83.5 %, 71.3 % and 81.4 % in nitrogen gas, whereas the related values in hydrogen gas were 60.1 %, 61.3 % and 40.1 %. In other words, the RA for the three types of specimens was smaller in hydrogen gas than in nitrogen gas. Dimples were formed on the fracture surfaces of the three specimen types in nitrogen gas, whereas both dimples and quasi-cleavages were formed in hydrogen gas.

Copyright © 2017 by ASME
Topics: Cooling , Pipes , Hydrogen



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In