0

Full Content is available to subscribers

Subscribe/Learn More  >

Proactive In-Situ Welding Stress Control for Laser Repair Welding of Irradiated Austenitic Materials

[+] Author Affiliations
Jian Chen, Zhili Feng

Oak Ridge National Laboratory, Oak Ridge, TN

Jonathan Tatman, Greg Frederick

Electric Power Research Institute, Charlotte, NC

Zongyao Chen

University of Tennessee, Knoxville, TN

Paper No. PVP2017-65202, pp. V06BT06A020; 6 pages
doi:10.1115/PVP2017-65202
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5800-4
  • Copyright © 2017 by ASME

abstract

Substantial research has been performed in recent years to determine the effects and feasibility of welding on highly irradiated austenitic materials. This research has been driven by the need to preemptively develop welding techniques capable of repairing highly irradiated light water reactor (LWR) components susceptible to detrimental corrosion and cracking. However, the materials used to fabricate internal LWR components become increasingly difficult to weld with in-service age due to irradiation-induced generation of helium in the material matrix over time. This paper introduces a patent-pending technology that proactively manages the stresses during laser repair welding of highly irradiated reactor internals to avoid the occurrence of intergranular helium-induced cracking. The technology development relied on numerical simulations that made it possible to refine and optimize the innovative welding concept and to identify specific process conditions achieving significant reduction of tensile stress (or even formation of compressive stress) near the weld pool in the heat-affected zone on cooling. The candidate welding process conditions identified by the numerical simulations were experimentally tested on stainless steel plates (Type 304L) with a laser welding system purposely designed and engineered to incorporate the proactive stress management concept. In-situ temperature and strain measurement technique based on digital image correlation were applied to validate the numerical simulations.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In